# Based on what you have read in Chapters 1-2, please explain how data analytics applies to your current or future role? ?What value can data analytics bring to your position? Ple

**Assigned Readings:**

Chapter 1. The Roles of Data and Predictive Analytics in Business

Chapter 2. Reasoning with Data

__ Initial Postings:__ Read and reflect on the assigned readings for the week. Then post what you thought was the most important concept(s), method(s), term(s), and/or any other thing that you felt was worthy of your understanding in each assigned textbook chapter.Your initial post should be based upon the assigned reading for the week, so the textbook should be a source listed in your reference section and cited within the body of the text. Other sources are not required but feel free to use them if they aid in your discussion.

Also, provide a graduate-level response to each of the following questions:

- Based on what you have read in Chapters 1-2, please explain how data analytics applies to your current or future role? What value can data analytics bring to your position? Please share your thoughts. Please cite examples according to APA standards.

[Your post must be substantive and demonstrate insight gained from the course material. __Postings must be in the student's own words – do not provide quotes__!]

[Your initial post should be at least **450+ words **and in APA format (including Times New Roman with font size 12 and double spaced). Post the actual body of your paper in the discussion thread then attach a Word version of the paper for APA review]

The Roles of Data and Predictive Analytics in Business

Chapter 1

© 2019 McGraw-Hill Education. All rights reserved. Authorized only for instructor use in the classroom. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Learning Objectives

Explain how predictive analytics can help in business strategy formulation.

Distinguish structured from unstructured data.

Differentiate units of observation.

Outline a data-generating process.

Describe the primary ways that data analysis is used to aid business performance.

Discriminate between lead and lag information.

Discriminate between active and passive prediction.

Recognize questions pertaining to business strategy that may utilize (active) predictive analytics.

‹#›

© 2019 McGraw-Hill Education.

Defining Data & Data Uses in Business

Data

A collection of information

Database

Organized collection of data that firms use for analysis

Business analytics

The use of data analysis to aid in business decision making

Predictive analytics

The use of data analysis to designed to form predictions about future, unknown, events or outcomes

‹#›

© 2019 McGraw-Hill Education.

Business Strategy

Plan of action designed by a business practitioner to achieve a business objective

Business objectives include profit maximization, enhanced employee satisfaction, etc.

Examples of action include pricing decisions, advertising campaigns, and methods of employee compensation

‹#›

© 2019 McGraw-Hill Education.

Predictive Analytics for Business Strategy

With no data, strong theoretical model is often not enough to predict effective business strategies

Sound theoretical arguments coupled with data becomes a strong tool to predict effective business strategies

Predictive analytics is an ideal complement to create a successful business strategy

‹#›

© 2019 McGraw-Hill Education.

Data Features

Structured Data

Data with well-defined units of observation which can be classified and structured in the form of a spreadsheet.

An example:

‹#›

© 2019 McGraw-Hill Education.

Data Features

Unstructured Data

Any data that cannot be classified and structured.

An example:

‹#›

© 2019 McGraw-Hill Education.

The Unit of Observation

The entity for which information has been collected

Crucial component of structured data

Tells us the way the in which the information in a dataset varies

Answers the questions: What, Where, Who, When?

Four main groupings: cross-sectional data, pooled cross-sectional data, time-series data, and panel data

‹#›

© 2019 McGraw-Hill Education.

Data Types

Cross-Sectional Data

Data that provide a snapshot of information at one fixed point in time.

An example:

‹#›

© 2019 McGraw-Hill Education.

Data Types

Pooled Cross-Sectional Data

Combination of two or more unrelated cross-sectional data merged into one.

An example

‹#›

© 2019 McGraw-Hill Education.

More Data Types

Time-series data:

Data that exhibit only variation in time

An example

‹#›

© 2019 McGraw-Hill Education.

More Data Types

Panel data

Same cross-sectional units over multiple points in time

An example

‹#›

© 2019 McGraw-Hill Education.

Data Generating Process (DGP)

Data Generating Process

The underlying mechanism that produces the pieces of information contained in a dataset

Steps for DGP

Establish both formal and informal DGP

Understand what variables are important

Create a representative statistical model

Collect and analyze relevant variables and perform simple tests

‹#›

© 2019 McGraw-Hill Education.

Basic Uses of Data Analysis for Business

Categories include:

Queries

Pattern discovery

Causal inference

‹#›

© 2019 McGraw-Hill Education.

Queries

Any request for information from a database

Descriptive Statistics

Quantitative measures meant to summarize and interpret properties of a dataset

Pivot Table

A tool for data summarization that enables different views of the underlying dataset.

‹#›

© 2019 McGraw-Hill Education.

Pattern Discovery

Pattern

Any distinct relationship between observations within a dataset

Pattern discovery

The process of identifying distinctive relationships between observations in a dataset

Data mining

Pattern discovery, typically in large datasets

‹#›

© 2019 McGraw-Hill Education.

Pattern Discovery

Types of Pattern Discovery

Association analysis

Looking for conditional probabilities to determine relationships between two or more variables

Cluster analysis

Groups of observations according to some measure of similarity

Outlier detection

Small subsets of observations, if they exist, that contain information far different from the vast majority of the observations in the dataset

‹#›

© 2019 McGraw-Hill Education.

17

Examples of Pattern Discovery

Example of Outlier Detection and Cluster Analysis

Example of Association Analysis: Scatter Plot on Profit & Price

‹#›

© 2019 McGraw-Hill Education.

Causal Inference

The process of establishing a causal relationship between a variable(s)representing a cause and a variable(s) representing an effect, where a change in the cause variable results in changes in the effect variable

Causal Inference

Direct: A change in the causal variable, X, directly affects change variable Y

Indirect: A change in X causes a change in Y, but only through its impact on a third variable, Z

‹#›

© 2019 McGraw-Hill Education.

Use of Causal Inference

Causal inference occurs in two ways:

Causal Inference has two important applications

Using Experimentation

Econometric Models

Prediction

Campaign Evaluation

‹#›

© 2019 McGraw-Hill Education.

Data Analysis for the Past, Present, and Future

Lag information

Information about past outcomes

Typically contains information on key performance indicators (KPIs), or variables that are used to help measure firm performance

Designed to answer the question, “What happened/ What is happening?”

Lag information can be generated by queries, pattern discovery, and causal inference

‹#›

© 2019 McGraw-Hill Education.

Examples of Lag Information

Reports

Any structured presentation of the information in a dataset

Scorecards

Any structured assessment of variables of interest, typically KPIs, against a given benchmark

Dashboards

A graphical presentation of the current standing and historical trends for variables of interest, typically KPIs

‹#›

© 2019 McGraw-Hill Education.

Report Example

‹#›

© 2019 McGraw-Hill Education.

Dashboard Example

‹#›

© 2019 McGraw-Hill Education.

Scorecard Example

‹#›

© 2019 McGraw-Hill Education.

Lead Information

Lead Information

Information that provides insights about the future

Designed to answer the question, “What is going to happen?”

It helps firms in its future planning process with expectations and strategic moves.

Lead information is not generally presented in a standardized format

‹#›

© 2019 McGraw-Hill Education.

Predictive Analytics and Lead Information

Predictive analytics is data analysis designed to provide lead information

Two ways predictive analytics can predict the future

Active prediction

Passive Prediction

‹#›

© 2019 McGraw-Hill Education.

Passive Prediction

Passive prediction uses predictive analytics to make predictions based on actual or hypothetical data, where no variables are exogenously altered.

Exogenously altered – a variable in a dataset that changes due to factors outside the data-generating process that are independent of all other variables within the data-generating process

Examples: Weather forecasting, prediction about customers likely to drop service etc.

Pattern discovery (data mining) when used to make predictions, is generally used for passive predictions

Model fit – the basis on which analysts choose among competing models for passive prediction

‹#›

© 2019 McGraw-Hill Education.

Active Prediction

Active prediction uses predictive analytics to make predictions based on actual or hypothetical data, for which one or more variables are exogenously altered.

Making active predictions need causal relationship between variable ‘X’ and variable ‘Y’.

If change in X affects Y, this occurs due to a causal relationship between the two.

‹#›

© 2019 McGraw-Hill Education.

Active Prediction for Business Strategy Formation

Predicting an outcome for alternative strategies requires the application of active prediction

To accurately predict an outcome for a range of competing strategies, you must establish the causal effects of those strategies in that outcome

The leap from correlation to causality is a large one, and can lead to grossly incorrect predictions

‹#›

© 2019 McGraw-Hill Education.

## image1.png

## image2.png

## image3.png

## image4.png

## image5.png

## image6.png

## image7.png

## image8.jpeg

## image9.png

## image10.png

## image11.png

## image12.png

## image13.png

,

Reasoning with Data

Chapter 2

© 2019 McGraw-Hill Education. All rights reserved. Authorized only for instructor use in the classroom. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Learning Objectives

Define reasoning.

Execute deductive reasoning.

Explain an empirically testable conclusion.

Execute inductive reasoning.

Differentiate between deductive and inductive reasoning.

Explain how inductive reasoning can be used to evaluate an assumption.

Describe selection bias in inductive reasoning.

‹#›

‹#›

© 2019 McGraw-Hill Education.

What is Reasoning?

Reasoning is the process of forming conclusions, judgments, or inferences from facts or data

Reasoning and logic are often used interchangeably

Logic is a description of the rules and/or steps behind the reasoning process

‹#›

‹#›

© 2019 McGraw-Hill Education.

Two Arguments

Argument 1:

The companies profits are up more than 10% over the past year. An increase in profits of 10% is the result of excellent management. You were the manager over the past year. Therefore, I conclude that you engaged in excellent management last year.

Argument 2:

Ten of your 300 employees came to me with complaints about your management. They indicated that you treated them unfairly by not giving them a raise they deserved. Therefore, I conclude that all of your employees are disgruntled with your management.

‹#›

‹#›

© 2019 McGraw-Hill Education.

Understanding Reasoning

In presenting the two arguments, the goal is not to make a definitive decision about which you believe (if either)

The goal is to think about and distinguish different “lines” of reasoning

In distinguishing between the different types of reasoning, you will be able to establish why you believe or question the claims made in the two arguments

‹#›

‹#›

© 2019 McGraw-Hill Education.

Two Major Types of Reasoning

Reasoning

Deductive Reasoning Inductive Reasoning

Both play an important role in interpreting and drawing conclusions from data analysis

‹#›

‹#›

© 2019 McGraw-Hill Education.

Deductive Reasoning

Deductive Reasoning

Goes from the general to the specific

Also known as top-down logic

Seeks to prove statements of the form “If A, then B”

‹#›

‹#›

© 2019 McGraw-Hill Education.

Deductive Reasoning

Such reasoning always implies three underlying components: assumptions (“If A”), methods of proof (“then”), and conclusions (“B”)

‹#›

‹#›

© 2019 McGraw-Hill Education.

Deductive Reasoning

The purest applications of deductive reasoning are in the field of mathematics

Two of the most used approaches are direct proofs and transposition

Direct proofs

Proof that begins with assumptions, explains methods of proof, and states the conclusion(s)

Transposition

Any time a group of assumptions implies a conclusion, then it is also true that any time the conclusion does not hold, at least one of the assumptions must not hold

‹#›

‹#›

© 2019 McGraw-Hill Education.

Direct Proof

Let’s prove the following statement by direct proof:

If X and Y are odd numbers, then their sum (X + Y) is an even number

An Example:

If X = 5(odd) and Y = 9(odd), then their sum X + Y = 14 is an even number

Failing to find a contradiction is not the same a proving a statement is generally true

‹#›

‹#›

© 2019 McGraw-Hill Education.

Direct Proof: A Mathematical Approach

If X and Y are odd numbers, then their sum (X + Y) is an even number

X and Y are odd numbers

If X is an odd number, then X can be written as X=2K+1, where K is an integer. (Example: X=13 X=(2 × 6)+1)

If Y is an odd number, then Y can be written as Y =2M+1, where M is an integer, (Example: Y=23 Y=(2 × 11)+1)

X+Y=(2K+1)+(2M+1)=2K+2M+2=2(K+M+1)

K+M+1 is an integer so X+Y is 2 times an integer

Any number that is 2 times an integer is divisible by 2

This means X+Y is even

‹#›

‹#›

© 2019 McGraw-Hill Education.

Direct Proof: Common Sense Approach

“If McDonald’s offers breakfast all day, their revenues will increase.”

McDonald’s stores offer breakfast all day.

The addition of breakfast during lunch/dinner hours implies more choices.

Customers already choosing McDonald’s during lunch/dinner hours can continue buying the same meals at McDonald’s.

Customers not choosing McDonald’s during lunch/dinner hours may start eating at McDonald’s.

Retaining current customers and adding new ones, McDonald’s revenues will increase overall.

‹#›

‹#›

© 2019 McGraw-Hill Education.

Transposition

While direct proofs are sufficient to prove a point logically, an alternative approach, transposition, may be more effective

Transposition

Is the equivalence between the statements “If A, then B” and “If not B, then A”

Any time a group of assumptions implies a conclusion, then it is also true that any time the conclusion does not hold, then at least one of the assumptions must not hold

‹#›

‹#›

© 2019 McGraw-Hill Education.

Transposition

“If A, then B” AND “If not B, then not A”

ASSUMPTIONS

(A)

CONCLUSIONS

(B)

‹#›

‹#›

© 2019 McGraw-Hill Education.

Transposition: A Mathematical Approach

Prove the statement: If X2 is even, then X is even

Suppose X is not an even number; it is instead an odd number

If X is an odd number, then X= (2K +1), where K is an integer

X2 = (2K+1)2 = 4K2 + 4K+1.

4K2 + 4K = 4(K2 +K) and so is divisible by 2

4K2 + 4K is an even number

X2 = 4(K2 +K)+1 is an even number plus 1, meaning it is an odd number

‹#›

‹#›

© 2019 McGraw-Hill Education.

Transposition

The statement was: If X2 is even, then X is even

Using transposition, the opposite of the conclusion is used to proof the opposite of the assumption: If X is odd, then X2 is even would be incorrect

Transposition can also be used without using mathematics to prove statements like “If A, then B”.

Transposition can be particularly effective if an assumption seems indisputably obvious.

‹#›

‹#›

© 2019 McGraw-Hill Education.

Transposition: An Example

Proof the statement: “If McDonald’s stores offer breakfast all day, revenue will increase”

McDonald’s stores revenues will not increase

This means total revenues from current and new customers will not increase

This means either there will be no new customers or revenues from current customers will decrease

This means there could not have been an expansion in the menu

McDonald’s stores do not offer breakfast all day

‹#›

‹#›

**
Collepals.com Plagiarism Free Papers
**

Are you looking for custom essay writing service or even dissertation writing services? Just request for our write my paper service, and we\'ll match you with the best essay writer in your subject! With an exceptional team of professional academic experts in a wide range of subjects, we can guarantee you an unrivaled quality of custom-written papers.

**Why Hire Collepals.com writers to do your paper?**

Quality- We are experienced and have access to ample research materials.

We write plagiarism Free Content

Confidential- We never share or sell your personal information to third parties.

Support-Chat with us today! We are always waiting to answer all your questions.