FORCES III questions
PROBLEM SET 6: Forces III 1. Uniform Circular Motion A space station, in the form of a wheel 120 m in diameter, rotates to provide an “artificial gravity” of 3.00 m/s2 for persons who walk around on the inner wall of the outer rim. Find the rate of the wheel’s rotation in revolutions per minute that will produce this effect. 2. Uniform Circular Motion A curve with a 102-m radius on a level road is banked at the correct angle for a speed of 20 m/s. If an automobile rounds this curve at 30 m/s, what is the minimum coefficient of static friction needed between tires and road to prevent skidding? 3. Uniform Circular Motion The 4.00-kg block in the figure is attached to a vertical rod by means of two strings. When the system rotates about the axis of the rod, the strings are extended as shown in the diagram and the tension in the upper string is 80.0 N. (a) What is the tension in the lower cord? (b) How many revolutions per minute does the system make? (c) Find the number of revolutions per minute at which the lower cord just goes slack. Explain what happens if the number of revolutions per minute is less than in part (c). 4. Nonuniform circular motion (horizontal) A hawk flies in a horizontal arc of radius 12.0 m at constant speed 4.00 m/s. (a) Find its centripetal acceleration. (b) It continues to fly along the same horizontal arc, but increases its speed at the rate of 1.20 m/s2. Find the acceleration (magnitude and direction) in this situation at the moment the hawk’s speed is 4.00 m/s. 5. Nonuniform circular motion (vertical) A roller coaster at the Six Flags Great America amusement park in Gurnee, Illinois, incorporates some clever design technology and some basic physics. Each vertical loop, instead of being circular, is shaped like a tear- drop. The cars ride on the inside of the loop at the top, and the speeds are fast enough to ensure the cars remain on the track. The biggest loop is 40.0 m high. Suppose the speed at the top of the loop is 13.0 m/s and the corresponding centripetal acceleration of the riders is 2g. (a) What is the radius of the arc of the teardrop at the top? (b) If the total mass of a car plus the riders is M, what force does the rail exert on the car at the top? (c) Suppose the roller coaster had a circular loop of radius 20.0 m. If the cars have the same speed, 13.0 m/s at the top, what is the centripetal acceleration of the riders at the top? (d) Comment on the normal force at the top in the situation described in part (c) and on the advantages of having teardrop-shaped loops. 1 6. Drag & Terminal Speed A small piece of Styrofoam packing material is dropped from a height of 2.00 m above the ground. Until it reaches terminal speed, the magnitude of its acceleration is given by a = g – Bv. After falling 0.500 m, the Styrofoam effectively reaches terminal speed and then takes 5.00 s more to reach the ground. (a) What is the value of the constant B? (b) What is the acceleration at t = 0s? (c) What is the acceleration when the speed is 0.150 m/s? 7. Accelerated frames A person stands on a scale in an elevator. As the elevator starts, the scale has a constant reading of 591 N. As the elevator later stops, the scale reading is 391 N. Assuming the magnitude of the acceleration is the same during starting and stopping, determine (a) the weight of the person, (b) the person’s mass, and (c) the acceleration of the elevator. 8. A 50.0-kg stunt pilot who has been diving her airplane vertically pulls out of the dive by changing her course to a circle in a vertical plane. (a) If the plane’s speed at the lowest point of the circle is 95.0 m/s, what is the minimum radius of the circle for the acceleration at this point not to exceed 4.00g? (b) What is the apparent weight of the pilot at the lowest point of the pullout? 9. A small bead can slide without friction on a circular hoop that is in a vertical plane and has a radius of 0.100 m. The hoop rotates at a constant rate of 4.00 rev/s about a vertical diameter. (a) Find the angle β at which the bead is in vertical equilibrium. (Of course, it has a radial acceleration toward the axis.) (b) Is it possible for the bead to “ride” at the same elevation as the center of the hoop? (c) What will happen if the hoop rotates at 1.00 rev/s? 2
Collepals.com Plagiarism Free Papers
Are you looking for custom essay writing service or even dissertation writing services? Just request for our write my paper service, and we'll match you with the best essay writer in your subject! With an exceptional team of professional academic experts in a wide range of subjects, we can guarantee you an unrivaled quality of custom-written papers.
Get ZERO PLAGIARISM, HUMAN WRITTEN ESSAYS
Why Hire Collepals.com writers to do your paper?
Quality- We are experienced and have access to ample research materials.
We write plagiarism Free Content
Confidential- We never share or sell your personal information to third parties.
Support-Chat with us today! We are always waiting to answer all your questions.
