The data if any needed for this assignment is posted on eLearn. If after giving some thought, you have problems doing this assignment, d
The data if any needed for this assignment is posted on eLearn. If after giving some thought, you have problems doing this assignment, do not hesitate to email or meet with me. You can discuss with each other, but please finish and write up the answers independently. Please submit a soft copy of your homework (typed answers in this word document and attach the SPSS output file to eLearn).
The National Bank of Fort Worth, Texas wants to examine methods for predicting sub-par payment performance on loans. They have data on unsecured consumer loans made over a 3-day period in October 2013 with a final maturity of 2 years. There are a total of 348 observations in the sample. The data, which have been transformed to provide confidentiality, include the following:
PAST DUE: Coded as 1 if the loan payment is past due and zero otherwise
CBSCORE: Score generated by the CSC Credit reporting agency from 400 to 839 with higher values indicating better credit rating
DEBT: Debt ratio calculated by taking required monthly payments on all debt and dividing it by gross monthly income of applicant and co-applicant. This ratio represents the amount of the applicant’s income that will go towards repayment of debt
GROSS INC: Gross monthly income of applicant and co-applicant
LOAN AMT: Loan Amount
You have been asked to examine the feasibility of predicting past-due loan payment. Report your results to the bank in a two-part report. The report should include an executive summary with a brief non-technical description of your results (less than 1 -page) and an accompanying technical report with the details of your analysis. The data are in an excel file posted on eLearn.
For the report, you should consider the following: Use of logistic to analyze the data; appropriate variables which are useful in predicting performance; the hit-rate in the estimation sample and how it compares with appropriate benchmark criteria.
Sheet1
PAST DUE | CBSCORE | DEBT | GROSS INC | LOAN AMT |
0 | 711 | 99 | 717 | 500 |
0 | 652 | 79 | 2417 | 1500 |
1 | 654 | 63 | 3333.330078125 | 6547 |
0 | 650 | 62 | 2125 | 1800 |
0 | 605 | 57 | 2249.5 | 10000 |
1 | 774 | 56 | 4956.990234375 | 6000 |
0 | 650 | 56 | 2333 | 2200 |
1 | 667 | 55 | 4500 | 7060.91015625 |
0 | 705 | 54 | 2750 | 11300 |
0 | 710 | 54 | 3000 | 1200 |
1 | 699 | 53 | 1995.5 | 10000 |
1 | 698 | 53 | 1001 | 2000 |
0 | 685 | 52 | 1125 | 4000 |
0 | 700 | 51 | 3201 | 2500 |
0 | 729 | 51 | 1516 | 1300 |
0 | 670 | 50 | 2421.6599121094 | 10000 |
0 | 671 | 49 | 1080 | 1460 |
1 | 713 | 48 | 3581.4099121094 | 6000 |
0 | 690 | 48 | 1833.3299560547 | 5000 |
1 | 682 | 48 | 3041.6599121094 | 4000 |
0 | 601 | 48 | 3045 | 2137.3000488281 |
1 | 676 | 47 | 3500 | 11000 |
0 | 693 | 47 | 3250 | 6000 |
0 | 704 | 47 | 2333 | 6000 |
1 | 649 | 46 | 4408.16015625 | 14000 |
0 | 731 | 46 | 3333.3200683594 | 10800 |
1 | 750 | 46 | 2950 | 7000 |
1 | 674 | 45 | 3000 | 13000 |
0 | 643 | 45 | 6123 | 10000 |
0 | 717 | 45 | 3333 | 2400 |
0 | 678 | 45 | 1200 | 2000 |
1 | 619 | 44 | 2333.330078125 | 10000 |
0 | 720 | 44 | 2500 | 3000 |
0 | 688 | 44 | 2000 | 1500 |
0 | 666 | 43 | 4231.16015625 | 6000 |
0 | 710 | 43 | 2040 | 3500 |
0 | 620 | 43 | 1875 | 1000 |
1 | 637 | 43 | 2580 | 800 |
0 | 703 | 42 | 3500 | 10000 |
1 | 710 | 42 | 1400 | 2000 |
0 | 765 | 42 | 1508 | 1200 |
0 | 711 | 41 | 4083 | 8590.7099609375 |
1 | 730 | 41 | 4458.330078125 | 7000 |
0 | 695 | 41 | 2500 | 3021 |
1 | 735 | 40 | 5321.16015625 | 14000 |
1 | 675 | 40 | 4499.990234375 | 11643 |
0 | 647 | 40 | 5466.580078125 | 10000 |
1 | 657 | 40 | 2500 | 9000 |
0 | 748 | 40 | 2833 | 3600 |
0 | 721 | 39 | 8250 | 10000 |
1 | 508 | 39 | 4735 | 8000 |
0 | 744 | 39 | 2499.9899902344 | 7000 |
1 | 660 | 39 | 1666.6600341797 | 6000 |
0 | 687 | 39 | 4502 | 3650 |
0 | 689 | 39 | 2367 | 1000 |
1 | 651 | 38 | 3033.330078125 | 12530 |
1 | 596 | 38 | 2180.580078125 | 10000 |
1 | 612 | 38 | 3499.9899902344 | 4000 |
0 | 708 | 38 | 3988 | 3500 |
0 | 672 | 38 | 1900 | 1500 |
0 | 770 | 37 | 2707.4099121094 | 9000 |
0 | 725 | 37 | 2460 | 3832.7800292969 |
0 | 731 | 37 | 2097.25 | 3500 |
0 | 684 | 37 | 1500 | 3000 |
0 | 783 | 37 | 1750 | 1100 |
1 | 694 | 36 | 4171.830078125 | 13667 |
0 | 656 | 36 | 3083.330078125 | 13000 |
1 | 637 | 36 | 5838 | 11500 |
1 | 602 | 36 | 4166.66015625 | 10000 |
0 | 753 | 36 | 3333.330078125 | 3000 |
1 | 694 | 36 | 2481 | 2000 |
1 | 722 | 36 | 2250 | 2000 |
0 | 710 | 36 | 2800 | 1500 |
1 | 741 | 36 | 975 | 200 |
1 | 633 | 35 | 3315.330078125 | 12500 |
1 | 660 | 35 | 2246.830078125 | 10000 |
0 | 735 | 35 | 2500 | 8000 |
1 | 627 | 35 | 6566.16015625 | 6000 |
1 | 703 | 35 | 2620.830078125 | 6000 |
0 | 638 | 35 | 4167 | 3000 |
0 | 726 | 35 | 2899.9899902344 | 3000 |
0 | 649 | 35 | 2501 | 3000 |
0 | 738 | 35 | 2150 | 2000 |
1 | 690 | 35 | 1400 | 1100 |
0 | 679 | 35 | 3199 | 1000 |
0 | 706 | 34 | 3608.330078125 | 14000 |
1 | 689 | 34 | 5077.91015625 | 10000 |
0 | 701 | 34 | 3900 | 3000 |
0 | 658 | 34 | 1401 | 1500 |
1 | 699 | 33 | 6710.41015625 | 14000 |
0 | 693 | 33 | 3166.6599121094 | 7503.8999023438 |
1 | 626 | 33 | 2883.330078125 | 7000 |
1 | 653 | 33 | 1734.7299804688 | 6000 |
0 | 715 | 33 | 2999 | 4700 |
0 | 750 | 33 | 5583 | 4000 |
0 | 638 | 33 | 2000 | 2000 |
1 | 675 | 33 | 3500 | 1500 |
1 | 637 | 33 | 1220 | 1000 |
1 | 625 | 32 | 5250 | 14222 |
1 | 699 | 32 | 3666.6599121094 | 12610 |
0 | 719 | 32 | 4041.6599121094 | 10000 |
0 | 726 | 32 | 3583.330078125 | 10000 |
1 | 642 | 32 | 7166.66015625 | 6084 |
0 | 686 | 32 | 2917 | 4900 |
1 | 638 | 32 | 2554 | 4800 |
0 | 708 | 32 | 2600 | 2500 |
1 | 667 | 32 | 5957.330078125 | 2001 |
0 | 665 | 32 | 2000 | 2000 |
1 | 715 | 32 | 1600 | 1000 |
1 | 698 | 31 | 3583.330078125 | 12000 |
1 | 713 | 31 | 2400 | 8000 |
1 | 705 | 31 | 2675 | 7000 |
1 | 716 | 31 | 5416.66015625 | 6000 |
0 | 694 | 31 | 3500 | 4256 |
0 | 667 | 31 | 2800 | 2500 |
1 | 711 | 31 | 893 | 2001 |
0 | 584 | 31 | 4700 | 1000 |
0 | 710 | 30 | 3389.330078125 | 13000 |
0 | 645 | 30 | 2643.1599121094 | 7000 |
1 | 667 | 30 | 4981 | 5000 |
0 | 731 | 30 | 2300 | 4000 |
0 | 638 | 30 | 1400 | 2000 |
0 | 738 | 30 | 2000 | 1600 |
0 | 710 | 30 | 3750 | 1500 |
1 | 651 | 30 | 3300 | 1300 |
0 | 641 | 30 | 1350 | 1000 |
1 | 642 | 29 | 3166.6599121094 | 14000 |
1 | 665 | 29 | 4083.080078125 | 10000 |
1 | 696 | 29 | 4000 | 9000 |
0 | 716 | 29 | 2886.4099121094 | 7000 |
0 | 766 | 29 | 3200 | 6500 |
0 | 716 | 29 | 2000 | 6000 |
0 | 672 | 29 | 4240 | 5000 |
1 | 765 | 29 | 3333.330078125 | 5000 |
1 | 723 | 29 | 3177.4099121094 | 5000 |
1 | 746 | 29 | 2933.330078125 | 5000 |
0 | 709 | 29 | 2500 | 4000 |
0 | 640 | 29 | 2324 | 3000 |
0 | 679 | 29 | 1226 | 1400 |
1 | 706 | 29 | 3345 | 1000 |
0 | 735 | 28 | 2583.330078125 | 14000 |
1 | 641 | 28 | 3000 | 12000 |
1 | 728 | 28 | 3899.9899902344 | 11000 |
1 | 704 | 28 | 3416.6599121094 | 11000 |
1 | 653 | 28 | 5157.66015625 | 10850 |
1 | 683 | 28 | 7833.330078125 | 10000 |
1 | 689 | 28 | 5749.990234375 | 10000 |
1 | 700 | 28 | 2600 | 10000 |
1 | 694 | 28 | 4166.66015625 | 8500 |
1 | 628 | 28 | 4416.66015625 | 7010.9501953125 |
1 | 684 | 28 | 3916.6599121094 | 7000 |
0 | 644 | 28 | 3142.5700683594 | 7000 |
1 | 708 | 28 | 4446.66015625 | 6000 |
1 | 690 | 28 | 5962.66015625 | 5000 |
1 | 636 | 28 | 2666.6599121094 | 5000 |
0 | 681 | 28 | 2000 | 4000 |
0 | 680 | 28 | 5702 | 2650 |
1 | 734 | 28 | 3750 | 1000 |
0 | 742 | 28 | 1100 | 1000 |
0 | 723 | 28 | 2833.330078125 | 600 |
0 | 774 | 27 | 3500 | 12000 |
1 | 743 | 27 | 5416.66015625 | 10000 |
0 | 717 | 27 | 4499.990234375 | 10000 |
1 | 657 | 27 | 2984.580078125 | 10000 |
1 | 698 | 27 | 1916.6600341797 | 10000 |
0 | 717 | 27 | 3916.6599121094 | 9000 |
0 | 747 | 27 | 5766 | 8325 |
1 | 680 | 27 | 2889.080078125 | 6000 |
0 | 669 | 27 | 3443 | 5000 |
0 | 776 | 27 | 5360 | 3000 |
1 | 640 | 27 | 2028 | 1653 |
1 | 630 | 27 | 1300 | 1500 |
1 | 716 | 26 | 4249.990234375 | 12500 |
1 | 623 | 26 | 4690.41015625 | 11000 |
1 | 680 | 26 | 4708.330078125 | 10000 |
0 | 705 | 26 | 2773.25 | 8000 |
1 | 626 | 26 | 4083.330078125 | 7000 |
0 | 697 | 26 | 3399.5 | 6000 |
0 | 712 | 26 | 2500 | 4000 |
1 | 713 | 26 | 2600 | 3200 |
1 | 609 | 26 | 4532 | 3000 |
1 | 663 | 26 | 2666.6599121094 | 3000 |
0 | 665 | 26 | 488 | 2000 |
0 | 762 | 26 | 1207 | 1500 |
0 | 738 | 26 | 1282 | 1000 |
1 | 704 | 25 | 2654.6599121094 | 10152 |
0 | 680 | 25 | 2097.25 | 4771 |
0 | 711 | 25 | 5300 | 3000 |
0 | 681 | 24 | 4583.330078125 | 12500 |
1 | 688 | 24 | 5000 | 10000 |
1 | 709 | 24 | 3833.3200683594 | 10000 |
0 | 738 | 24 | 3105.5 | 10000 |
1 | 688 | 24 | 2567 | 10000 |
1 | 690 | 24 | 3148 | 5000 |
1 | 612 | 24 | 4333 | 4061.2800292969 |
0 | 710 | 24 | 8000 | 4000 |
0 | 762 | 24 | 4500 | 4000 |
1 | 657 | 24 | 3500 | 3500 |
1 | 729 | 24 | 2000 | 3000 |
0 | 625 | 24 | 2900 | 2500 |
0 | 785 | 24 | 3500 | 2047.6300048828 |
0 | 740 | 24 | 3167 | 2000 |
0 | 682 | 24 | 2500 | 2000 |
0 | 664 | 23 | 2500 | 10000 |
0 | 680 | 23 | 4050 | 9873 |
1 | 679 | 23 | 5350 | 8749 |
0 | 680 | 23 | 2916.6599121094 | 8000 |
1 | 742 | 23 | 3964.330078125 | 6000 |
0 | 700 | 23 | 3110.4899902344 | 6000 |
1 | 626 | 23 | 991 | 5000 |
0 | 706 | 23 | 6493 | 3500 |
1 | 714 | 23 | 4441.990234375 | 3000 |
1 | 744 | 22 | 6166.66015625 | 10000 |
0 | 766 | 22 | 3250 | 9000 |
1 | 658 | 22 | 2500 | 7000 |
0 | 627 | 22 | 2500 | 4011 |
1 | 663 | 22 | 1554 | 2713.6999511719 |
1 | 716 | 22 | 2160 | 2500 |
0 | 664 | 22 | 1127 | 1500 |
0 | 672 | 22 | 1123 | 1500 |
0 | 711 | 21 | 4305 | 10690 |
1 | 639 | 21 | 7416.66015625 | 10000 |
1 | 654 | 21 | 5677 | 10000 |
0 | 775 | 21 | 4166.66015625 | 10000 |
1 | 643 | 21 | 3154.6599121094 | 10000 |
0 | 727 | 21 | 2779.580078125 | 10000 |
0 | 728 | 21 | 1151 | 8000 |
1 | 663 | 21 | 5083.330078125 | 7000 |
1 | 601 | 21 | 6250 | 6860 |
0 | 751 | 21 | 2827 | 6400 |
0 | 743 | 21 | 6583 | 6000 |
0 | 687 | 21 | 3740 | 6000 |
1 | 636 | 21 | 2416.6599121094 | 5000 |
0 | 784 | 21 | 5000 | 3900 |
1 | 641 | 21 | 2166 | 3500 |
0 | 687 | 21 | 2250 | 2000 |
0 | 723 | 20 | 5412.330078125 | 12500 |
1 | 661 | 20 | 4875 | 10000 |
0 | 695 | 20 | 6249.990234375 | 9000 |
1 | 646 | 20 | 4029.1599121094 | 8000 |
0 | 723 | 20 | 2359.830078125 | 8000 |
0 | 696 | 20 | 2166.6599121094 | 6000 |
1 | 662 | 20 | 1700 | 6000 |
1 | 657 | 20 | 4966.3198242188 | 4000 |
1 | 720 | 20 | 4166.66015625 | 3000 |
1 | 666 | 20 | 2600 | 3000 |
0 | 804 | 20 | 2360 | 2100 |
0 | 762 | 20 | 1754 | 2000 |
1 | 665 | 20 | 1333 | 1000 |
0 | 747 | 19 | 5749.990234375 | 12500 |
0 | 681 | 19 | 4500 | 10000 |
1 | 661 | 19 | 4333.330078125 | 9653 |
0 | 692 | 19 | 4900 | 7000 |
1 | 779 | 19 | 7397 | 5000 |
1 | 603 | 19 | 5833.3198242188 | 4000 |
1 | 648 | 19 | 3000 | 3500 |
0 | 788 | 19 | 2435 | 3000 |
0 | 774 | 19 | 2500 | 2500 |
0 | 582 | 19 | 8175 | 2100 |
1 | 666 | 19 | 2586.25 | 1000 |
1 | 637 | 18 | 2238 | 7000 |
0 | 647 | 18 | 3681 | 1000 |
1 | 589 | 18 | 2300 | 500 |
1 | 747 | 17 | 6408.330078125 | 12500 |
0 | 727 | 17 | 3916.6599121094 | 8500 |
0 | 725 | 17 | 3833.330078125 | 7500 |
1 | 739 | 17 | 2103.330078125 | 5000 |
0 | 694 | 17 | 3333 | 2000 |
0 | 715 | 17 | 1011 | 1750 |
0 | 781 | 16 | 3333 | 8500 |
1 | 729 | 16 | 3250 | 6000 |
1 | 626 | 16 | 1721 | 5000 |
0 | 667 | 16 | 6250 | 4060 |
1 | 659 | 16 | 2550 | 3503.3500976563 |
0 | 728 | 16 | 3160 | 3000 |
0 | 784 | 16 | 3333 | 2500 |
0 | 775 | 16 | 3033 | 2300 |
0 | 737 | 16 | 3000 | 1800 |
0 | 759 | 16 | 3007 | 1200 |
0 | 728 | 15 | 5400 | 5000 |
0 | 714 | 15 | 1820 | 4000 |
0 | 730 | 15 | 2500 | 3000 |
0 | 713 | 15 | 2080 | 2068 |
0 | 680 | 15 | 3700 | 1200 |
1 | 631 | 15 | 509 | 1000 |
0 | 742 | 14 | 6018.330078125 | 10000 |
1 | 696 | 14 | 3750 | 10000 |
0 | 720 | 14 | 7166.66015625 | 9000 |
0 | 677 | 14 | 4583.330078125 | 7500 |
0 | 789 | 14 | 2800 | 3000 |
1 | 709 | 14 | 1250 | 3000 |
1 | 637 | 14 | 4608 | 2500 |
1 | 651 | 14 | 2000 | 2000 |
0 | 719 | 14 | 1833 | 2000 |
0 | 592 | 14 | 5000 | 1724 |
0 | 729 | 14 | 2800 | 1500 |
0 | 762 | 14 | 1290 | 1500 |
0 | 711 | 13 | 8291.66015625 | 12500 |
1 | 769 | 13 | 5000 | 7500 |
0 | 725 | 13 | 1307 | 3775 |
0 | 711 | 12 | 3958 | 2000 |
0 | 726 | 11 | 2712 | 7000 |
0 | 738 | 11 | 4750 | 6000 |
1 | 611 | 11 | 4333 | 3000 |
1 | 537 | 11 | 3500 | 2000 |
0 | 699 | 11 | 4583 | 1000 |
0 | 622 | 11 | 800 | 1000 |
1 | 682 | 11 | 589 | 595 |
0 | 692 | 10 | 3166.6599121094 | 8500 |
1 | 749 | 10 | 6280.240234375 | 7500 |
1 | 662 | 10 | 2400 | 4000 |
0 | 718 | 10 | 2203 | 4000 |
0 | 780 | 10 | 3109 | 3000 |
1 | 659 | 10 | 4695 | 2500 |
1 | 712 | 10 | 3768.330078125 | 2001 |
0 | 716 | 9 | 2583.330078125 | 10085 |
0 | 705 | 9 | 3000 | 6000 |
0 | 646 | 9 | 1453 | 1500 |
0 | 766 | 9 | 2291.6599121094 | 1000 |
1 | 700 | 8 | 5458.330078125 | 5000 |
0 | 695 | 8 | 4447.66015625 | 4000 |
0 | 686 | 8 | 2950 | 3000 |
0 | 713 | 8 | 880 | 2000 |
1 | 695 | 7 | 5833.330078125 | 5000 |
1 | 648 | 6 | 5000 | 11083 |
0 | 649 | 6 | 7083.330078125 | 5000 |
0 | 790 | 6 | 1500 | 2723 |
1 | 628 | 6 | 1250 | 1500 |
1 | 631 | 6 | 4615 | 1000 |
1 | 701 | 5 | 1800 | 4000 |
1 | 774 | 5 | 4583.330078125 | 3000 |
0 | 743 | 5 | 742 | 2500 |
0 | 656 | 5 | 2218 | 2000 |
0 | 721 | 5 | 1755 | 1700 |
0 | 738 | 5 | 1560 | 1000 |
0 | 735 | 5 | 1125 | 1000 |
1 | 620 | 4 | 2125 | 10000 |
0 | 663 | 4 | 8190 | 3000 |
0 | 704 | 4 | 4333 | 1000 |
0 | 716 | 3 | 1600 | 700 |
0 | 667 | 3 | 1400 | 600 |
0 | 727 | 2 | 1348 | 9133 |
0 | 722 | 2 | 1541 | 4059.4699707031 |
0 | 685 | 2 | 3556 | 3500 |
0 | 706 | 2 | 3200 | 1500 |
0 | 765 | 1 | 1731 | 1500 |
0 | 717 | 0 | 1053 | 2622 |
0 | 742 | 0 | 1850 | 2500 |
,
Individual Assignment on Logistic Regression
The data if any needed for this assignment is posted on eLearn. If after giving some thought, you have problems doing this assignment, do not hesitate to email or meet with me. You can discuss with each other, but please finish and write up the answers independently. Please submit a soft copy of your homework (typed answers in this word document and attach the SPSS output file to eLearn).
The National Bank of Fort Worth, Texas wants to examine methods for predicting sub-par payment performance on loans. They have data on unsecured consumer loans made over a 3-day period in October 2013 with a final maturity of 2 years. There are a total of 348 observations in the sample. The data, which have been transformed to provide confidentiality, include the following:
PAST DUE: Coded as 1 if the loan payment is past due and zero otherwise
CBSCORE: Score generated by the CSC Credit reporting agency from 400 to 839 with higher values indicating better credit rating
DEBT: Debt ratio calculated by taking required monthly payments on all debt and dividing it by gross monthly income of applicant and co-applicant. This ratio represents the amount of the applicant’s income that will go towards repayment of debt
GROSS INC: Gross monthly income of applicant and co-applicant
LOAN AMT: Loan Amount
You have been asked to examine the feasibility of predicting past-due loan payment. Report your results to the bank in a two-part report. The report should include an executive summary with a brief non-technical description of your results (less than 1-page) and an accompanying technical report with the details of your analysis. The data are in an excel file posted on eLearn.
For the report, you should consider the following: Use of logistic to analyze the data; appropriate variables which are useful in predicting performance; the hit-rate in the estimation sample and how it compares with appropriate benchmark criteria.
,
Logistic Regression
[DataSet1]
Case Processing Summary
Unweighted Casesa N Percent
Selected Cases Included in Analysis
Missing Cases
Total
Unselected Cases
Total
3 4 8 1 0 0 . 0
0 . 0
3 4 8 1 0 0 . 0
0 . 0
3 4 8 1 0 0 . 0
If weight is in effect, see classification table for the total number of cases.a.
Dependent Variable Encoding
Original Value Internal Value
0
1
0
1
Block 0: Beginning Block
Classification Tablea,b
Observed
Predicted
PAST DUE Percentage Correct0 1
Step 0 PAST DUE 0
1
Overall Percentage
1 9 8 0 1 0 0 . 0
1 5 0 0 . 0
5 6 . 9
Constant is included in the model.a.
The cut value is .500b.
Variables in the Equation
B S.E. Wald d f Sig. Exp(B)
Step 0 Constant – . 2 7 8 . 1 0 8 6 . 5 7 8 1 . 0 1 0 . 7 5 8
Page 1
Variables not in the Equation
Score d f Sig.
Step 0 Variables CBSCORE
DEBT
GROSS INC
LOAN AMT
Overall Statistics
38.886 1 . 0 0 0
. 4 8 8 1 . 4 8 5
7 . 4 3 4 1 . 0 0 6
20.174 1 . 0 0 0
58.080 4 . 0 0 0
Block 1: Method = Enter
Omnibus Tests of Model Coefficients
Chi-square d f Sig.
Step 1 Step
Block
Model
63.060 4 . 0 0 0
63.060 4 . 0 0 0
63.060 4 . 0 0 0
Model Summary
Step -2 Log
likelihood Cox & Snell R
Square Nagelkerke R
Square
1 412.728 a . 1 6 6 . 2 2 2
Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.
a.
Classification Tablea
Observed
Predicted
PAST DUE Percentage Correct0 1
Step 1 PAST DUE 0
1
Overall Percentage
1 5 5 4 3 7 8 . 3
6 2 8 8 5 8 . 7
6 9 . 8
The cut value is .500a.
Page 2
Variables in the Equation
B S.E. Wald d f Sig. Exp(B)
Step 1a CBSCORE
DEBT
GROSS INC
LOAN AMT
Constant
– . 0 1 7 . 0 0 3 35.000 1 . 0 0 0 . 9 8 3
– . 0 0 4 . 0 0 9 . 2 1 0 1 . 6 4 7 . 9 9 6
. 0 0 0 . 0 0 0 . 4 7 9 1 . 4 8 9 1 . 0 0 0
. 0 0 0 . 0 0 0 14.540 1 . 0 0 0 1 . 0 0 0
10.672 2 . 0 3 2 27.595 1 . 0 0 0 43141.305
Variable(s) entered on step 1: CBSCORE, DEBT, GROSS INC, LOAN AMT.a.
Page 3
- Logistic Regression
- Title
- Active Dataset
- Case Processing Summary
- Dependent Variable Encoding
- Block 0: Beginning Block
- Title
- Classification Table
- Variables in the Equation
- Variables not
Collepals.com Plagiarism Free Papers
Are you looking for custom essay writing service or even dissertation writing services? Just request for our write my paper service, and we'll match you with the best essay writer in your subject! With an exceptional team of professional academic experts in a wide range of subjects, we can guarantee you an unrivaled quality of custom-written papers.
Get ZERO PLAGIARISM, HUMAN WRITTEN ESSAYS
Why Hire Collepals.com writers to do your paper?
Quality- We are experienced and have access to ample research materials.
We write plagiarism Free Content
Confidential- We never share or sell your personal information to third parties.
Support-Chat with us today! We are always waiting to answer all your questions.