Dataset: HMGT400HOSPITAL.csv (may be downloaded below.) Required analysis program: Analysis ToolPak – for all analyses in this
Dataset: HMGT400HOSPITAL.csv (may be downloaded below.)
Required analysis program: Analysis ToolPak – for all analyses in this class (RStudio or R Programming for BONUS point seekers only – 10 bonus points if used for analysis).
Author, Hossein Zare, PhD
Citation: Zare, H. (2017). HMGT 400 Research and Data Analysis in Health Care-Exercise. UMGC.EDU
Exercise # 1 Instructions:
1. You may download the dataset from the link below. This dataset provides information about hospitals in 2011 and 2012. Before you do that however consult the additional instructions that I provided to you in 4 PDF email attachments. ([a]. Ex 1 – Additional Instructions. [b] Ex 1 – Instructions t-Test to compare means [c] Ex 1 – Example t-Test Output. [d] Ex 1 – Example Output – Graphs).
2. Analyze the data, using these instructions. Your objective is to use the results of your analysis to create "summary statistics" (Count (N), Mean, and Standard Deviation) for each hospital characteristic and each year (2011 and 2012) and complete Table 1 (template below). You should then create any meaningful graphs (using Excel) to summarize your findings and to write a short paragraph summary report describing your findings.
3. Your report may be in WORD format, with the tables you create in Excel copied and pasted in WORD. Submit your report to the appropriate folder.
Table 1. Descriptive statistics between hospitals in 2011 & 2012
################## ################## # Exercise #1 ################## ################## # This week you can work with the DPLYR packages this package help you to get your results with only a few lines codes sink("C:/UMUC/week1exercise.txt") # Step 1: Install package dplyr & read it # install.packages('dplyr') library(dplyr) # Step 2: Read your data # Pl change the location of file, please see the following video to learn about the location of file in your computer. hosp <- read.csv("C:/UMUC/HMGT400HOSPITAL.csv", header=T, sep = ',') # if you are working with MAC the above line should be: hosp <- read.csv("~/DOCUMNETS/UMUC/HMGT400HOSPITAL.csv", header=T, sep = ',') #Step 3: See the variables' names names (hosp) #You need to make sure you have the following variable in the dataset ##1 hospital_beds; Hospital beds ##2 total_hospital_employees_on_payr;Number of paid Employee ##3 total_hospital_non_paid_workers; Number of non-paid Employee ##4 total_hosp_cost; Total hospital cost ##5 log_hosp_revenue; Total hospital revenues ##6 total_hospital_medicare_days; Available Medicare days ##7 total_hospital_medicaid_days; Available Medicaid days ##8 total_hospital_discharges; Total Hospital Discharge ##9 total_hospital_medicare_discharg; Medicare discharge ##10 total_hospital_medicaid_discharg; Medicaid discharge # step 4: see number of obs. for teaching and non-teaching hospitals # This command shows that how many observations are available for 2011 and 2012 table(hosp$year) # Step 5: group the variable YEAR by using the group_by command year_cat <- group_by(hosp, year) # Step 6: See the means summarize (year_cat, bed=mean(hospital_beds, na.rm=T), payer=mean(total_hospital_employees_on_payr, na.rm=T), nopayer=mean(total_hospital_non_paid_workers, na.rm=T), cost=mean(total_hosp_cost, na.rm=T), revenue=mean(total_hosp_revenue, na.rm=T), medicare=mean(total_hospital_medicare_days, na.rm=T), mediciad=mean(total_hospital_medicaid_days, na.rm=T), totdis=mean(total_hospital_discharges, na.rm=T), mediciaredis=mean(total_hospital_medicare_discharg, na.rm=T), mediciaddis=mean(total_hospital_medicaid_discharg, na.rm=T)) # Step 7: See the SD summarize (year_cat, bed=sd(hospital_beds, na.rm=T), payer=sd(total_hospital_employees_on_payr, na.rm=T), nopayer=sd(total_hospital_non_paid_workers, na.rm=T), cost=sd(total_hosp_cost, na.rm=T), revenue=sd(total_hosp_revenue, na.rm=T), medicare=sd(total_hospital_medicare_days, na.rm=T), mediciad=sd(total_hospital_medicaid_days, na.rm=T), totdis=sd(total_hospital_discharges, na.rm=T), mediciaredis=sd(total_hospital_medicare_discharg, na.rm=T), mediciaddis=sd(total_hospital_medicaid_discharg, na.rm=T)) # write.table(tme1, file = "C:/UMUC/t1me1.csv", sep = ",", quote = FALSE, row.names = F) # write.table(tse1, file = "C:/UMUC/t2se2.csv", sep = ",", quote = FALSE, row.names = F) # Step 8: Generate 2 dataset for a ttest. hosp_11 <- subset(hosp, hosp$year==2011) hosp_12 <- subset(hosp, hosp$year==2012) # Step 9: See the results of ttest # 9-1 t.test(hosp_11$hospital_beds, hosp_12$hospital_beds, paired = F) # 9-2 t.test(hosp_11$total_hospital_employees_on_payr, hosp_12$total_hospital_employees_on_payr, paired = F) # 9-3 t.test(hosp_11$total_hospital_non_paid_workers, hosp_12$total_hospital_non_paid_workers, paired = F) # 9-4 t.test(hosp_11$total_hosp_cost, hosp_12$total_hosp_cost, paired = F) # 9-5 t.test(hosp_11$total_hosp_revenue, hosp_12$total_hosp_revenue, paired = F) # 9-6 t.test(hosp_11$total_hospital_medicare_days, hosp_12$total_hospital_medicare_days, paired = F) # 9-7 t.test(hosp_11$total_hospital_medicaid_days, hosp_12$total_hospital_medicaid_days, paired = F) # 9-8 t.test(hosp_11$total_hospital_discharges, hosp_12$total_hospital_discharges, paired = F) # 9-9 t.test(hosp_11$total_hospital_medicare_discharg, hosp_12$total_hospital_medicare_discharg, paired = F) # 9-10 t.test(hosp_11$total_hospital_medicaid_discharg, hosp_12$total_hospital_medicaid_discharg, paired = F) # Step 10: Generate 2 dataset for a ttest. # N for 2011 ############ # 10-1 mytable <- table(hosp_11$hospital_beds) summary(mytable) # 10-2 mytable <- table(hosp_11$total_hospital_employees_on_payr) summary(mytable) # 10-3 mytable <- table(hosp_11$total_hospital_non_paid_workers) summary(mytable) # 10-4 mytable <- table(hosp_11$total_hosp_cost) summary(mytable) # 10-5 mytable <- table(hosp_11$total_hosp_revenue) summary(mytable) # 10-6 mytable <- table(hosp_11$total_hospital_medicare_days) summary(mytable) # 10-7 mytable <- table(hosp_11$total_hospital_medicaid_days) summary(mytable) # 10-8 mytable <- table(hosp_11$total_hospital_discharges) summary(mytable) # 10-9 mytable <- table(hosp_11$total_hospital_medicare_discharg) summary(mytable) # 10-10 mytable <- table(hosp_11$total_hospital_medicaid_discharg) summary(mytable) # N for 2012 ############ # 10-1 mytable <- table(hosp_12$hospital_beds) summary(mytable) # 10-2 mytable <- table(hosp_12$total_hospital_employees_on_payr) summary(mytable) # 10-3 mytable <- table(hosp_12$total_hospital_non_paid_workers) summary(mytable) # 10-4 mytable <- table(hosp_12$total_hosp_cost) summary(mytable) # 10-5 mytable <- table(hosp_12$total_hosp_revenue) summary(mytable) # 10-6 mytable <- table(hosp_12$total_hospital_medicare_days) summary(mytable) # 10-7 mytable <- table(hosp_12$total_hospital_medicaid_days) summary(mytable) # 10-8 mytable <- table(hosp_12$total_hospital_discharges) summary(mytable) # 10-9 mytable <- table(hosp_12$total_hospital_medicare_discharg) summary(mytable) # 10-10 mytable <- table(hosp_12$total_hospital_medicaid_discharg) summary(mytable) #11 To see the boc plot you can use the codes from week 1 boxplot (hosp$hospital_beds~hosp$year, main="Figure 1. Comparing number of beds in in teaching & non-teaching hospitals",cex.main=1, xlab="Year", ylab="# of Beds") #12 Remove outliers and see the plot hosppic <- subset(hosp, hosp$hospital_beds<2000) boxplot (hosppic$hospital_beds~hosppic$year, main="Figure 2. Comparing number of beds in in teaching & non-teaching hospitals, if hospital bed<2000", cex.main=1, xlab="Year", ylab="# of Beds") sink() # Thank you # Dr. Zare HMGT400
.cls-1{isolation:isolate;}.cls-2{fill:#001847;}
-
.cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}
0
.cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}
-
.cls-1{fill:#f0f4ff}.cls-2{fill:#001847}
- Post a question
- Home.
- Literature.
HMGT 400 6382 Research and Data Analysis in Healthcare (2222)
.cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}
HMGT400HOSPITAL.csv Home >Reading homework help >HMGT 400 6382 Research and Data Analysis in Healthcare (2222)
stata_name | stcd | year | total_hosp_cost | total_hosp_revenue | hospital_beds | bedsize_cat | teaching_hospital | system_member | level_trauma | white | rural_area | herf_cat | herf_index | non_white | log_hosp_cost | log_hosp_revenue | total_hospital_beds | total_hospital_medicare_days | total_hospital_medicaid_days | interns_and_residents | total_hospital_employees_on_payr | total_hospital_non_paid_workers | total_hospital_medicare_discharg | total_hospital_medicaid_discharg | total_hospital_discharges | own |
Arizona | 86 | 2012 | 1.89E+07 | 1.73E+07 | 19 | 1 | 0 | 0 | 0 | 58.7 | 0 | 1 | 0 | 41.3 | 16.75435 | 16.66785 | 168.92 | 11551.5 | 8206.92 | 855.048 | 2695.488 | 2867 | 8879 | 0 | ||
Arizona | 86 | 2012 | 8.01E+07 | 7.94E+07 | 88 | 3 | 0 | 0 | 0 | 58.5 | 0 | 1 | 2 | 41.5 | 18.19875 | 18.19 | 138.02 | 14629.86 | 2423.52 | 1209.024 | 4117.736 | 697 | 6998 | 1 | ||
Arizona | 86 | 2012 | 1.47E+08 | 1.33E+08 | 134 | 4 | 0 | 0 | 0 | 82 | 0 | 1 | 2 | 18 | 18.80468 | 18.70265 | 74.16 | 3784.2 | 4354.38 | 490.464 | 1305.488 | 1253 | 4320 | 0 | ||
Arizona | 86 | 2012 | 7.74E+07 | 8.81E+07 | 72 | 3 | 0 | 0 | 0 | 82 | 0 | 1 | 2 | 18 | 18.16424 | 18.29439 | 25.75 | 306 | 225.42 | 132.84 | 74.504 | 66 | 257 | 0 | ||
Arizona | 86 | 2012 | 1.53E+08 | 1.41E+08 | 187 | 4 | 0 | 0 | 0 | 58.7 | 0 | 1 | 2 | 41.3 | 18.84588 | 18.76257 | 19.57 | 1545.3 | 98.94 | 139.608 | 259.096 | 18 | 429 | 2 | ||
Arizona | 86 | 2012 | 1.60E+07 | 1.70E+07 | 21 | 1 | 0 | 0 | 0 | 20.4 | 1 | 0 | 2 | 79.6 | 16.58738 | 16.65044 | 20.6 | 1042.44 | 235.62 | 185.148 | 160.128 | 77 | 366 | 2 | ||
Arizona | 86 | 2012 | 7.02E+08 | 7.55E+08 | 460 | 7 | 0 | 0 | 1 | 55.3 | 0 | 1 | 2 | 44.7 | 20.36947 | 20.4425 | 493.37 | 28329.48 | 46840.44 | 356.34 | 4570.98 | 5216.392 | 9139 | 26341 | 2 | |
Arizona | 86 | 2012 | 2.07E+07 | 2.29E+07 | 14 | 1 | 0 | 0 | 3 | 58.5 | 0 | 1 | 2 | 41.5 | 16.84361 | 16.94799 | 237.93 | 5724.24 | 11063.94 | 95.39 | 1073.82 | 1195.4 | 1481 | 6836 | 0 | |
Arizona | 86 | 2012 | 1.67E+08 | 1.72E+08 | 163 | 4 | 0 | 0 | 3 | 55.3 | 0 | 1 | 2 | 44.7 | 18.93446 | 18.96016 | 14.42 | 961.86 | 255 | 154.62 | 151.232 | 98 | 356 | 1 | ||
Arizona | 86 | 2012 | 2.32E+07 | 2.06E+07 | 56 | 3 | 0 | 1 | 0 | 16 | 0 | 1 | 2 | 84 | 16.95965 | 16.84255 | 61.8 | 3816.84 | 1180.14 | 307.2 | 1159.816 | 312 | 2738 | 0 | ||
Arizona | 86 | 2012 | 9.60E+07 | 1.20E+08 | 3550 | 4 | 0 | 1 | 0 | 58.7 | 0 | 1 | 0 | 41.3 | 18.37936 | 18.59896 | 37.08 | 1138.32 | 2433.72 | 315.804 | 433.68 | 660 | 2426 | 0 | ||
Arizona | 86 | 2012 | 1.31E+08 | 1.49E+08 | 110 | 4 | 0 | 1 | 0 | 82 | 0 | 1 | 2 | 18 | 18.68941 | 18.82107 | 101.97 | 8494.56 | 3713.82 | 8 | 882.924 | 2048.304 | 934 | 4332 | 1 | |
Arizona | 86 | 2012 | 1.81E+08 | 1.99E+08 | 460 | 5 | 0 | 1 | 0 | 58.7 | 0 | 1 | 0 | 41.3 | 19.01667 | 19.10902 | 360.5 | 12812.22 | 9098.4 | 1110 | 3155.856 | 2109 | 10925 | 1 | ||
Arizona | 86 | 2012 | 5.37E+07 | 3.92E+07 | 3550 | 2 | 0 | 1 | 0 | 58.7 | 0 | 1 | 2 | 41.3 | 17.79862 | 17.48499 | 210.12 | 10312.2 | 9235.08 | 1303.464 | 2696.6 | 2715 | 12235 | 0 | ||
Arizona | 86 | 2012 | 2.28E+08 | 2.45E+08 | 3550 | 6 | 0 | 1 | 0 | 58.7 | 0 | 1 | 0 | 41.3 | 19.24457 | 19.31838 | 354.32 | 27260.52 | 9731.82 | 1711.284 | 7236.896 | 2559 | 18413 | 1 | ||
Arizona | 86 | 2012 | 3.15E+08 | 3.79E+08 | 267 | 5 | 0 | 1 | 1 | 55.2 | 0 | 2 | 2 | 44.8 | 19.56899 | 19.7525 | 252.35 | 16108.86 | 15733.5 | 1894.188 | 3968.728 | 3487 | 12895 | 2 | ||
Arizona | 86 | 2012 | 2.64E+08 | 2.81E+08 | 460 | 5 | 0 | 1 | 1 | 58.7 | 0 | 1 | 0 | 41.3 | 19.39099 | 19.45325 | 273.98 | 17960.16 | 16340.4 | 1704.816 | 4232.272 | 3447 | 16298 | 2 | ||
Arizona | 86 | 2012 | 4.70E+08 | 5.17E+08 | 3550 | 8 | 0 | 1 | 1 | 58.7 | 0 | 1 | 0 | 41.3 | 19.96899 | 20.06368 | 273.98 | 17960.16 | 16340.4 | 1704.816 | 4232.272 | 3447 | 16298 | 1 | ||
Arizona | 86 | 2012 | 3.94E+08 | 4.35E+08 | 3550 | 7 | 0 | 1 | 1 | 58.7 | 0 | 1 | 0 | 41.3 | 19.79191 | 19.89182 | 273.98 | 17960.16 | 16340.4 | 1704.816 | 4232.272 | 3447 | 16298 | 1 | ||
Arizona | 86 | 2012 | 3.48E+07 | 3.67E+07 | 25 | 2 | 0 | 1 | 3 | 65.9 | 0 | 1 | 2 | 34.1 | 17.36395 | 17.41857 | 0 | |||||||||
Arizona | 86 | 2012 | 5.24E+07 | 5.62E+07 | 49 | 2 | 1 | 0 | 0 | 52.3 | 0 | 2 | 2 | 47.7 | 17.77366 | 17.8452 | 507.79 | 29487.18 | 40869.36 | 44.66 | 3096.06 | 7225.776 | 8762 | 29644 | 1 | |
Arizona | 86 | 2012 | 4.28E+08 | 4.54E+08 | 553 | 8 | 1 | 0 | 0 | 55.3 | 0 | 1 | 2 | 44.7 | 19.8756 | 19.9329 | 50.47 | 2233.8 | 2249.1 | 500.772 | 563.784 | 654 | 2095 | 0 | ||
Arizona | 86 | 2012 | 1.22E+08 | 1.23E+08 | 89 | 3 | 1 | 0 | 3 | 43.9 | 1 | 1 | 2 | 56.1 | 18.61977 | 18.62993 | 91.67 | 4144.26 | 5121.42 | 788.256 | 1223.2 | 1544 | 3712 | 0 | ||
Arizona | 86 | 2012 | 2.23E+08 | 2.16E+08 | 3550 | 4 | 1 | 1 | 0 | 58.7 | 0 | 1 | 0 | 41.3 | 19.22436 | 19.19189 | 244.11 | 29369.88 | 2147.1 | 89.71 | 5149.536 | 6878.832 | 264 | 12315 | 2 | |
Arizona | 86 | 2012 | 2.27E+08 | 2.68E+08 | 3550 | 6 | 1 | 1 | 0 | 58.7 | 0 | 1 | 0 | 41.3 | 19.24058 | 19.40528 | 397.58 | 38496.84 | 4977.6 | 1.88 | 2182.056 | 9723.328 | 1340 | 22069 | 1 | |
Arizona | 86 | 2012 | 9.23E+08 | 9.84E+08 | 244 | 5 | 1 | 1 | 0 | 58.7 | 0 | 1 | 0 | 41.3 | 20.64341 | 20.70665 | 327.54 | 32268.72 | 11889.12 | 1869.108 | 8493.456 | 2780 | 20464 | 2 | ||
Arizona | 86 | 2012 | 2.72E+08 | 2.95E+08 | 3550 | 7 | 1 | 1 | 0 | 58.7 | 0 | 1 | 0 | 41.3 | 19.42014 | 19.50291 | 169.95 | 8433.36 | 12750 | 1059.324 | 2466.416 | 4690 | 13654 | 0 | ||
Arizona | 86 | 2012 | 6.06E+08 | 6.80E+08 | 3550 | 8 | 1 | 1 | 1 | 58.7 | 0 | 1 | 0 | 41.3 | 20.22179 | 20.33736 | 585.04 | 37101.48 | 53716.26 | 129.3 | 4415.16 | 7460.408 | 10624 | 36275 | 0 | |
Arizona | 86 | 2012 | 1.98E+08 | 2.41E+08 | 3550 | 5 | 1 | 1 | 2 | 58.7 | 0 | 1 | 0 | 41.3 | 19.1031 | 19.30064 | 220.42 | 12159.42 | 24371.88 | 1554.48 | 3299.304 | 5620 | 18796 | 2 | ||
Arkansas | 71 | 2012 | 8125045 | 7994666 | 49 | 2 | 0 | 0 | 0 | 84 | 0 | 1 | 2 | 16 | 15.91046 | 15.89429 | 111.24 | 8150.82 | 1690.14 | 717.768 | 2257.36 | 803 | 4634 | 2 | ||
Arkansas | 71 | 2012 | 7.38E+07 | 7.72E+07 | 125 | 4 | 0 | 0 | 0 | 95.2 | 0 | 2 | 2 | 4.800003 | 18.11635 | 18.16157 | 120.51 | 11514.78 | 1907.4 | 704.808 | 2766.656 | 561 | 4925 | 1 | ||
Arkansas | 71 | 2012 | 7.12E+07 | 7.71E+07 | 124 | 4 | 0 | 0 | 0 | 89 | 0 | 1 | 2 | 11 | 18.08072 | 18.16073 | 13.39 | 1.02 | 1 | 1 | 2 | |||||
Arkansas | 71 | 2012 | 2.28E+07 | 2.36E+07 | 33 | 2 | 0 | 0 | 0 | 68.2 | 1 | 0 | 2 | 31.8 | 16.9437 | 16.97513 | 25.75 | 1785 | 57.12 | 103.896 | 394.76 | 26 | 502 | 1 | ||
Arkansas | 71 | 2012 | 1.05E+07 | 1.03E+07 | 85 | 3 | 0 | 0 | 0 | 71 | 1 | 0 | 2 | 29 | 16.16907 | 16.143 | 25.75 | 1164.84 | 44.88 | 178.392 | 306.912 | 22 | 395 | 1 | ||
Arkansas | 71 | 2012 | 1.62E+07 | 1.88E+07 | 25 | 2 | 0 | 0 | 0 | 40.3 | 1 | 0 | 2 | 59.7 | 16.60155 | 16.75008 | 25.75 | 1051.62 | 194.82 | 117.936 | 259.096 | 62 | 414 | 2 | ||
Arkansas | 71 | 2012 | 9525674 | 8233617 | 25 | 2 | 0 | 0 | 0 | 92.2 | 1 | 0 | 2 | 7.800003 | 16.0695 | 15.92374 | 25.75 | 2970.24 | 762.96 | 180.468 | 760.608 | 429 | 1243 | 2 | ||
Arkansas | 71 | 2012 | 2.08E+07 | 2.22E+07 | 72 | 3 | 0 | 0 | 0 | 84.1 | 1 | 0 | 2 | 15.9 | 16.85083 | 16.91463 | 25.75 | 3277.26 | 839.46 | 177.708 | 684.992 | 144 | 1136 | 2 | ||
Arkansas | 71 | 2012 | 1.90E+07 | 1.95E+07 | 35 | 2 | 0 | 0 | 0 | 58 | 1 | 0 | 2 | 42 | 16.75869 | 16.7843 | 25.75 | 1048.56 | 140.76 | 108.792 | 253.536 | 47 | 380 | 1 | ||
Arkansas | 71 | 2012 | 7280002 | 6124331 | 26 | 2 | 0 | 0 | 0 | 95 | 1 | 0 | 2 | 5 | 15.80064 | 15.62778 | 25.75 | 2063.46 | 1147.5 | 203.184 | 529.312 | 427 | 1213 | 2 | ||
Arkansas | 71 | 2012 | 8981868 | 8779914 | 25 | 2 | 0 | 0 | 0 | 46.8 | 1 | 0 | 2 | 53.2 | 16.01072 | 15.98798 | 25.75 | 2063.46 | 1147.5 | 203.184 | 529.312 | 427 | 1213 | 2 | ||
Arkansas | 71 | 2012 | 1.80E+08 | 1.80E+08 | 333 | 6 | 0 | 0 | 2 | 41.4 | 0 | 2 | 2 | 58.6 | 19.00796 | 19.00953 | 226.6 | 21352.68 | 3790.32 | 16.25 | 1445.7 | 5354.28 | 1043 | 11444 | 1 | |
Arkansas | 71 | 2012 | 1.61E+08 | 1.64E+08 | 266 | 5 | 0 | 0 | 3 | 96 | 0 | 1 | 2 | 4 | 18.89993 | 18.91253 | 284.28 | 39680.04 | 10245.9 | 16.76 | 1947.264 | 8560.176 | 2906 | 17086 | 0 | |
Arkansas | 71 | 2012 | 5.86E+07 | 5.84E+07 | 125 | 4 | 0 | 0 | 3 | 95.4 | 0 | 1 | 2 | 4.599998 | 17.88697 | 17.88236 | 117.42 | 10665.12 | 2298.06 | 700.38 | 2274.04 | 863 | 4928 | 2 | ||
Arkansas | 71 | 2012 | 1.34E+08 | 1.34E+08 | 146 | 4 | 0 | 0 | 3 | 82.4 | 0 | 1 | 2 | 17.6 | 18.71023 | 18.71331 | 172.01 | 20803.92 | 2783.58 | 1168.872 | 5972.552 | 939 | 9666 | 2 | ||
Arkansas | 71 | 2012 | 2.37E+08 | 2.55E+08 | 375 | 6 | 0 | 0 | 3 | 79.6 | 0 | 2 | 2 | 20.4 | 19.28277 | 19.35728 | 172.01 | 20803.92 | 2783.58 | 1168.872 | 5972.552 | 939 | 9666 | 2 | ||
Arkansas | 71 | 2012 | 3.19E+07 | 3.25E+07 | 80 | 3 | 0 | 0 | 3 | 83.5 | 1 | 0 | 2 | 16.5 | 17.2775 | 17.29597 | 59.74 | 3112.02 | 1345.38 | 344.82 | 821.768 | 550 | 2632 | 2 | ||
Arkansas | 71 | 2012 | 2.39E+07 | 3.39E+07 | 143 | 4 | 0 | 0 | 3 | 94.1 | 1 | 0 | 2 | 5.900002 | 16.99044 | 17.34006 | 30.9 | 1881.9 | 263.16 | 171.948 | 603.816 | 73 | 815 | 1 | ||
Arkansas | 71 | 2012 | 1.65E+07 | 1.69E+07 | 46 | 2 | 0 | 0 | 3 | 95.9 | 1 | 0 | 2 | 4.099998 | 16.62067 | 16.64345 | 25.75 | 2254.2 | 130.56 | 210.636 | 449.248 | 35 | 600 | 0 | ||
Arkansas | 71 | 2012 | 1.85E+07 | 1.91E+07 | 41 | 2 | 0 | 0 | 4 | 76.7 | 0 | 1 | 2 | 23.3 | 16.73334 | 16.76492 | 2 | |||||||||
Arkansas | 71 | 2012 | 1.34E+07 | 1.19E+07 | 25 | 2 | 0 | 0 | 4 | 46.8 | 1 | 0 | 2 | 53.2 | 16.41199 | 16.29221 | 25.75 | 1712.58 | 548.76 | 140.916 | 385.864 | 227 | 834 | 1 | ||
Arkansas | 71 | 2012 | 9563577 | 8258766 | 25 | 2 | 0 | 1 | 0 | 93.8 | 0 | 1 | 2 | 6.199997 | 16.07347 | 15.92679 | 220.42 | 29111.82 | 4643.04 | 1369.116 | 6231.648 | 1279 | 10879 | 0 | ||
Arkansas | 71 | 2012 | 1.78E+08 | 1.75E+08 | 282 | 5 | 0 | 1 | 0 | 84 | 0 | 1 | 2 | 16 | 18.9969 | 18.9805 | 164.8 | 10821.18 | 2282.76 | 973.464 | 3209.232 | 913 | 8682 | 1 | ||
Arkansas | 71 | 2012 | 1.58E+08 | 1.78E+08 | 141 | 4 | 0 | 1 | 0 | 76.6 | 0 | 1 | 2 | 23.4 | 18.88097 | 18.99704 | 25.75 | 1110.78 | 80.58 | 70.944 | 224.624 | 18 | 307 | 1 | ||
Arkansas | 71 | 2012 | 1.02E+07 | 7574942 | 24 | 1 | 0 | 1 | 0 | 85.3 | 1 | 0 | 2 | 14.7 | 16.13752 | 15.84036 | 24.72 | 1094.46 | 60.18 | 53.4 | 264.656 | 17 | 377 | 1 | ||
Arkansas | 71 | 2012 | 1.51E+08 | 1.56E+08 | 171 | 4 | 0 | 1 | 2 | 89.8 | 0 | 1 | 2 | 10.2 | 18.83054 | 18.86587 | 442.9 | 47683.98 | 10017.42 | 5 | 1928.376 | 9634.368 | 2162 | 20543 | 2 | |
Arkansas | 71 | 2012 | 3.57E+08 | 3.23E+08 | 409 | 7 | 0 | 1 | 2 | 55.3 | 0 | 1 | 1 | 44.7 | 19.69448 | 19.59453 | 142.14 | 21330.24 | 3384.36 | 120
Collepals.com Plagiarism Free Papers Are you looking for custom essay writing service or even dissertation writing services? Just request for our write my paper service, and we'll match you with the best essay writer in your subject! With an exceptional team of professional academic experts in a wide range of subjects, we can guarantee you an unrivaled quality of custom-written papers. Get ZERO PLAGIARISM, HUMAN WRITTEN ESSAYS Why Hire Collepals.com writers to do your paper? Quality- We are experienced and have access to ample research materials. We write plagiarism Free Content Confidential- We never share or sell your personal information to third parties. Support-Chat with us today! We are always waiting to answer all your questions. All Rights Reserved Terms and Conditions |